A SVM and k-NN Restricted Stacking to Improve Land Use and Land Cover Classification

نویسندگان

  • Jorge García-Gutiérrez
  • Daniel Mateos-García
  • José Cristóbal Riquelme Santos
چکیده

Land use and land cover (LULC) maps are remote sensing products that are used to classify areas into different landscapes. The newest techniques have been applied to improve the final LULC classification and most of them are based on SVM classifiers. In this paper, a new method based on a multiple classifiers ensemble to improve LULC map accuracy is shown. The method builds a statistical raster from LIDAR and image fusion data following a pixel-oriented strategy. Then, the pixels from a training area are used to build a SVM and k-NN restricted stacking taking into account the special characteristics of spatial data. A comparison between a SVM and the restricted stacking is carried out. The results of the tests show that our approach improves the results in the context of the real data from a riparian area of Huelva (Spain).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EVOR-STACK: A label-dependent evolutive stacking on remote sensing data fusion

Land use and land cover (LULC) maps are remote sensing products that are used to classify areas into different landscapes. Data fusion for remote sensing is becoming an important tool to improve classical approaches. In addition, soft computing techniques such as machine learning or evolutive computation are often applied to improve the final LULC classification. In this paper, a method based o...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Land use and land cover spatiotemporal dynamic pattern and predicting changes using integrated CA-Markov model

Analyzing the process of land use and cover changes during long periods of time and predicting the future changes is highly important and useful for the land use managers. In this study, the land use maps in the Ardabil plain in north-west part of Iran for four periods (1989, 1998, 2009 and 2013) are extracted and analyzed through remote sensing technique, using the land-sat satellite images. T...

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

Simulation of Future Land Use Map of the Catchment Area, with the Integration of Cellular Automata and Markov Chain Models Based on Selection of the Best Classification Algorithm: A Case Study of Fakhrabad Basin of Mehriz, Yazd

INTRODUCTION Since the land use change affects many natural processes including soil erosion and sediment yield, floods and soil degradation and the chemical and physical properties of soil, so, different aspects of land use changes in the past and future should be considered particularly in the planning and decision-making. One of the most important applications of remote sensing is land ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010